haskell-scripting Documentation

Kostiantyn Rybnikov

Oct 11, 2018

Contents:

1 Prerequisites 3
L1 Simple SCripts o v e e e e e e e e e e e e e 3

2 Indices and tables 5

haskell-scripting Documentation

Haskell is becoming more and more easy in terms of a language in which you can write small programs that usually
are launched from command-line and do some helpful work. Unlike regular programming techniques, scripting is
focused on “getting things done” in a fastest possible way, so usage of techniques like erroring out early and using
exceptions is not considered a bad style.

This repository’s goal is to become a one-stop shop serving as a cookbook on scripting in Haskell, going from most
simple and easy towards more complicated and framework-heavy patterns, capturing most common data formats and
libraries used in scripting (“most common” metric was chosen arbitrary). PRs and Issues proposing improvements are
welcome!

Contents: 1

haskell-scripting Documentation

2 Contents:

CHAPTER 1

Prerequisites

e install the stack tool

e run stack setup to install GHC

1.1 Simple Scripts

Simplest script in haskell looks like this: [simple.hs](./simple.hs):

#!/usr/bin/env stack

—-— stack —-resolver=lts-12.7 script
main :: IO ()
main = do

putStrLn "hello, scripting!"

Just mark this file as executable (via chmod +x ./simple_stdin_stdout.hs) and launch as usual:

$./simple_stdin_stdout.hs
hello, scripting!

You can compile your script to get an executable like this:

$ stack ghc —--resolver=1ts-12.7 ./simple_stdin_stdout.hs
Linking simple_stdin_stdout

$./simple_stdin_stdout

hello, scripting!

With a stack script shown above, you can use whatever packages are present in a snapshot without listing them
out. For example: simple_with_dep.hs:

#!/usr/bin/env stack
-— stack —-resolver=lts-12.7 script

(continues on next page)

https://docs.haskellstack.org/en/stable/README/
https://www.stackage.org/lts-12.7
simple_with_dep.hs

haskell-scripting Documentation

(continued from previous page)

import Database.Redis

main :: IO ()
main = do
putStrLn "hello, scripting!”

If you want to use a non-snapshot dependency, you can use a stack runghc (or stack ghc) command with
dependency packages being listed in a ——package argument: simple_stdin_stdout_nonsnapshot_dep.hs:

#!/usr/bin/env stack
—-— stack —--resolver=lts-12.7 --package corenlp-parser script

import NLP.CoreNLP
main :: IO ()

main = do
putStrLn "hello, scripting!"

Notes/Caveats:
* TODO compiling with Wall/Werror and other flags
* buffering (per-line? per-byte? need to set buffering mode)

* best practice: upon reading/writing to stdin/stdout, usage of String is bad, better use Text, best — bytestrings
(TODO: citation on encoding problems needed)

4 Chapter 1. Prerequisites

simple_stdin_stdout_nonsnapshot_dep.hs

CHAPTER 2

Indices and tables

* genindex
* modindex

e search

	Prerequisites
	Simple Scripts

	Indices and tables

